израсходование топлива - tradução para francês
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

израсходование топлива - tradução para francês

ВЕЩЕСТВО, СПОСОБНОЕ ВЫДЕЛЯТЬ ЭНЕРГИЮ В ХОДЕ ОПРЕДЕЛЁННЫХ ПРОЦЕССОВ, КОТОРУЮ МОЖНО ИСПОЛЬЗОВАТЬ ДЛЯ ТЕХНИЧЕСКИХ ЦЕЛЕЙ
Вид топлива; Горючее; Топлива; Горючие материалы; Жидкое топливо
  • Топливо из древесины, горение в камине

израсходование топлива      
consommation de combustible
E. = épuisement      
израсходование; выгорание (топлива)
горючее         
carburant, combustible; см. тж. топливо

Definição

Топливо

горючие вещества, выделяющие при сжигании значительное количество теплоты, которая используется непосредственно в технологических процессах или преобразуется в др. виды энергии. Для сжигания Т. служат различные технические устройства - Топки, печи (См. Печь), камеры сгорания (См. Камера сгорания). Существует много горючих веществ, однако к Т. относят только те, которые достаточно широко распространены в природе, причём добыча их не связана с большими затратами, а продукты сгорания практически безвредны. Таким требованиям отвечают вещества, основная составная часть которых - углерод. К ним относятся полезные ископаемые органического происхождения - бурый уголь, горючие газы, горючие сланцы, каменный уголь, нефть, торф, а также древесина и растительные отходы (солома, лузга и др.). Исключение составляет Т. для ракетных двигателей (см. Ракетное топливо, Металлсодержащее топливо).

В ядерной энергетике применяется понятие ядерного Т.- вещества, ядра которого делятся под действием нейтронов, выделяя при этом энергию в основном в виде кинетической энергии осколков деления ядер и нейтронов (см. Ядерное топливо). Поэтому обычное химическое Т., в отличие от ядерного, называется органическим. Природное органическое Т. - основной источник теплоты, используемой человечеством (70-е гг. 20 в.). На сырье из природного Т. почти полностью базируется нефтехимическая промышленность (см. Основной органический синтез), производство смазочных материалов и т. д. (см. Нефтепродукты).

Первоначально для получения теплоты (огня) пользовались главным образом растительным Т. (дровами и т. д.). Ископаемые Т. - уголь и нефть известны с древнейших времён, но лишь с середины 19 в. эти виды Т. стали вытеснять менее калорийные растительные Т., что имело большое значение для сохранения лесов (см. Охрана природы).

Свойства Т. в значит, степени определяются их химическим составом (в \% по массе). Содержащиеся в Т. химические элементы обозначаются соответствующими символами - С, Н, О, N, S; Зола и вода - соответственно А и W. Влажность и зольность Т. даже в пределах одного его сорта подвержены значительным колебаниям, поэтому для уточнения характеристик часто используют составы Т., отнесённые не только к рабочей массе, то есть подаваемой в топку (обозначается индексом р), но и к сухой массе (с), горючей (г), органической (о). Например, обозначение С г‑91 показывает, что горючая масса данного Т. содержит углерода 91\% (по массе). Важнейшая характеристика практической ценности Т. - Теплота сгорания. Для сравнительных расчётов используется понятие топлива условного (См. Топливо условное) с теплотой сгорания 7000 ккал/кг (29308 кдж/кг). Качество каменных углей характеризуется выходом летучих веществ Vл, переходящих в газо- или парообразное состояние при нагревании угля без доступа воздуха. При этом образуется нелетучий остаток, по свойствам которого судят о спекаемости данного угля, то есть его пригодности для коксования. Окисляемость Т. при обычных температурах определяет способы и сроки хранения Т.; при высокой окисляемости Т. могут самовоспламеняться. Способность Т. к самовоспламенению (См. Самовоспламенение) определяют температурой воспламенения. Жидкие Т., кроме того, характеризуются температурой вспышки (способностью смеси паров Т. с воздухом воспламеняться без загорания самой жидкости). Эта характеристика имеет определяющее значение при сжигании Т. в двигателях внутреннего сгорания. Возможность получения высоких температур при сжигании Т. зависит от жаропроизводительности Ta - максимальной температуры, теоретически достигаемой при полном сгорании Т. в воздухе, причём выделяемая теплота полностью расходуется на нагрев образующихся продуктов сгорания. Механическая прочность твёрдого Т. имеет большое значение при перевозках его на дальние расстояния и многократных перегрузках. При сжигании Т. в виде пыли затрата энергии на Пылеприготовление характеризуется размолоспособностью Т. При слоевом сжигании Т. большое значение имеет также его гранулометрический состав, т.е. содержание в Т. частиц различной крупности. В таблице приведены основные характеристики некоторых Т.

Основные характеристики некоторых топлив

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

| Вид топлива | Состав, \% (по массе) | Выход | Жаропроиз- | Теплота |

|--------------------------------------------------------------------------------------------------------------------------| летучих Vл | водительность, | сгорания Qрн |

| | Wр | Aр | Cр | Hр | Sр | Nр | Oр | ,\% | Та,0С | , Мдж/кг |

| | | | | | | | | (по массе) | | |

| | | | | | | | | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Дрова | 40 | 0,6 | 30,3 | 3,6 | -0,1 | 0,4 | 25,1 | 85 | 1600 | 10,2 |

| Фрезерный торф | 50 | 6,3 | 24,7 | 2,6 | 0,2 | 1,1 | 15,2 | 70 | 1500 | 8,1 |

| Бурый уголь (канско- | 33 | 6 | 43,7 | 3 | 3,2 | 0,6 | 13,5 | 48 | 1800 | 15,7 |

| ачинский) | 8 | 23 | 55,2 | 3,8 | 1,6 | 1,0 | 5,8 | 40 | 2050 | 22 |

| Каменный уголь | 0,5 | 23 | 63,8 | 1,2 | 2,8 | 0,6 | 1,3 | 3,5 | 2150 | 22,6 |

| (газовый донецкий) | 3 | 0,1 | 83 | 10,4 | 0,05 | - | 0,7 | - | 2100 | 39,2 |

| Антрацитовый штыб | - | - | 85 | 14,9 | - | - | 0,05 | - | 2100 | 44 |

| Мазут | - | - | 74 | 25 | | 1,0 | - | - | 2000 | 35,6* |

| (высокосернистый) | | | | | | | | | | |

| Бензин | | | | | | | | | | |

| Природный газ | | | | | | | | | | |

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

* Теплота сгорания природного газа дана в Мдж/м3.

Т. по агрегатному состоянию подразделяют на твёрдые, жидкие, газообразные; по происхождению - на природные (уголь, нефть и др.) и искусственные, получаемые в результате переработки природных Т. Например, качество твёрдого Т. может повышаться (без изменения его химического состава) Брикетированием, обогащением, пылеприготовлением. Применяемый в доменном процессе кокс изготовляют нагреванием Т. (главным образом каменного угля) до 950-1050 °C без доступа воздуха (см. Коксование, Коксохимия). Из жидкого природного Т. (нефти) нефтепродукты вырабатывают дистилляцией (См. Дистилляция) (см. Перегонка нефти), Крекингом, Пиролизом. Последний - один из важнейших промышленных методов получения сырья для нефтехимического синтеза (См. Нефтехимический синтез). Газообразное искусственное Т. получают из твёрдого и жидкого газификацией топлив (См. Газификация топлив) (см. также Подземная газификация углей, Газы нефтепереработки). О биохимической переработке раститительного Т. см. в ст. Гидролиз растительных материалов.

При современном уровне добычи (1975) разведанных запасов угля хватит на тысячи лет, прогнозных запасов нефти и газа при существующем уровне добычи - лишь на 100-150 лет, а с учётом роста темпов добычи эти запасы могут быть исчерпаны за 50-60 лет. Ограниченность ресурсов газа и нефти и значительное повышение их стоимости вызвали стремление к экономии ископаемого Т. и использованию для получения энергии др. источников (см. Теплоэнергетика, Гелиотехника, Ядерная энергетика, Энергетический кризис).

Так как почти всё добываемое Т. сжигается (лишь около 10\% нефти и газа потребляется в виде сырья), ежегодный выброс в атмосферу Земли веществ, образующихся при сжигании Т., достигает огромных количеств: золы около 150 млн. т, окислов серы около 100 млн. т, окислов азота около 60 млн. т, двуокиси углерода около 20 млрд. т. Для защиты окружающей среды разрабатываются различные методы улавливания вредных веществ из продуктов сжигания, а также такие способы сжигания, при которых эти вещества (окислы азота и CO) не образуются.

Лит. см. при статьях об отд. видах Т.

И. Н. Розенгауз.

Wikipédia

Топливо

То́пливо в широком смысле слова — это вещество, способное выделять энергию в ходе определённых процессов, которую можно использовать для технических целей. Химическое топливо выделяет энергию в ходе экзотермических химических реакций при горении, ядерное топливо — в ходе ядерных реакций. Некоторые топлива (например, гомогенные пороха или твёрдые ракетные топлива) способны к самостоятельному горению в отсутствие окислителя. Однако большинство топлив, используемых в быту и в промышленности, требует для сжигания наличия кислорода, и такие топлива также могут называться горючими. Наиболее распространёнными горючими материалами являются органические топлива, в составе которых есть углерод и водород. Топлива подразделяются по агрегатному состоянию вещества на твёрдые, жидкие и газообразные, а по способу получения — на природные (уголь, нефть, газ) и искусственные. Ископаемые природные топлива служат основным источником энергии для современного общества. В 2010 году примерно 90 % всей энергии, производимой человечеством на Земле, добывалось сжиганием ископаемого топлива или биотоплива, и, по прогнозам Управления энергетических исследований и разработок (США), эта доля не упадёт ниже 80 % до 2040 года при одновременном росте энергопотребления на 56 % в период с 2010 по 2040 годы. С этим связаны такие глобальные проблемы современной цивилизации, как истощение невозобновляемых энергоресурсов, загрязнение окружающей среды и глобальное потепление.